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(v) Classes 622, 6mm, 62m, 6/mmm 

di jk=d[Y3k(1J l lY2J- -Y2iY l j )+  V3j(lllllJ2k--V2iVlk)]. (43) 

Cubic system 
(i) Classes 23, m3, 432, 43m, m3m 

di j  k = d(Yl iv2jy3k --~ l~liV3jV2k • ]lZilI3jVlk -q- IJ2ilIljV3k 
"~- IJ3IVIjVEk "Jw l)3il)2j•lk ) . (44) 

The form-invariant expressions for fl~j and d~jk ob- 
tained in the case of various magnetic crystal classes 
are referred to a Cartesian coordinate system with 
respect to which the triad vl, v2, va has an arbitrary 
orientation. However, when conventional choice (Bha- 
gavantam, 1966) of the Cartesian system is made, the 
form-invariant expression furnished above gives the 
appropriate number of non-vanishing components 
dtjk, as demonstrated in the case of(30). A similar check 
can be made in the case of expressions for fl~j and 
d~jk corresponding to other classes. 
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Previously the concept of ferroelasticity, introduced by Aizu, has only been studied in connexion with 
classical point groups. In this paper the use of this concept is extended to the Shubnikov point groups; 
this is important in connexion with ferroelectric phase transitions and various kinds of magnetic phase 
transition. Tables are given which enable all ferroelastic species to be identified. 

1. Introduction 

The concept of a 'ferroelastic' crystal was introduced 
by Aizu (1969) and it is relevant to the discussion of 
displacive phase transitions. By the term 'displacive' 
phase transition we mean a phase transition which 
does not involve any major structural rearrangement 
of the atomic positions in a crystal, but involves only 
rather small displacements of the equilibrium positions 
of the atoms. These displacements will generally be 
accompanied by a reduction in the symmetry of the 
crystal and displacive phase transitions may also be 
ferroelectric transitions but need not necessarily be 
so. The concept of ferroelasticity, its relationship to 
the phenomenon of ferroelectricity, and the examina- 
tion of the symmetries of ferroelastic crystals described 
by Aizu (1969) was restricted to materials with the 
symmetry of one of the 32 classical point groups. It 

seemed to be desirable to extend Aizu's work to the 
Shubnikov point groups for two reasons. First, there 
are many possible ferroelectric symmetries which are 
described by Shubnikov point groups (Neronova & 
Belov, 1959; Ascher, 1970; Schelkens, 1970; Zheludev, 
1971). Secondly, it would seem to be profitable to ex- 
tend the use of the concept of 'ferroelasticity' in con- 
nexion with magnetic phase transitions, which would 
also involve the use of Shubnikov point groups. 

In many magnetic crystals the onset of magnetic 
ordering is accompanied by a magnetostrictive distor- 
tion of the crystal structure, with a consequent reduc- 
tion in the symmetry of the crystal. There may be 
several possible choices of direction for the preferred 
orientation associated with the magnetic ordering, with 
the resultant occurrence of magnetic domains even 
within a crystal that was a single crystal in its non- 
magnetic phase. The relevance of the concept of ferro- 
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elasticity to magnetic phase transitions can be seen 
from the fact that the application of mechanical stress 
to a single-crystal specimen, while it undergoes the 
transition from the non-magnetic state to the mag- 
netically ordered state, is one of the ways of attempt- 
ing to produce single-domain single-crystal specimens 
of magnetic materials. If a magnetic phase transition 
only involved an ordering of the magnetic moments 
of the atoms in a crystal, without any associated mag- 
netostrictive distortion, the concept of ferroelasticity 
would not be relevant to magnetic phase transitions. 
It is common to regard most magnetic phase transi- 
tions as continuous (i.e. second-order) phase transi- 
tions, or at least approximately continuous phase tran- 
sitions. There are, however, a number of examples of 
magnetic phase transitions which are actually discon- 
tinuous (i.e. first-order) phase transitions and which 
are accompanied by significant magnetostrictive dis- 
tortions [see for example the tables given by Grazh- 
dankina (1968) and P~il (1969)]; it is in connexion with 
this type of magnetic phase transition that the concept 
of ferroelasticity can also be expected to be useful. 

2. The determination of the possible symmetries of 
ferroelastic crystals 

There is an analogy between the property of ferro- 
elasticity and the properties of ferroelectricity and of 
ferromagnetism. It is common to regard a ferroelectric 
crystal as a crystal in which there exists a spontaneous 
electric polarization P in the absence of an external 
electric field. Using the well known theory of the sym- 
metries of the tensor properties of crystalline materials 
(Nye, 1957; Birss, 1966) it is possible to show that 
for a large number of the Shubnikov point groups a 
polar/-vector, such as P, must be null. Of all the 122 
Shubnikov point groups there are only 31 in which 
ferroelectricity is possible (Neronova & Belov, 1959) 
and the list of these groups is reproduced in Table l(a). 

Table 1. Ferroelectric and ferromagnet ic  point  groups 

(a) Ferroelectric 
Type I Type II Type III 

1 1' 
2 21' 2' 
m ml" m' 
mm2 mm21" m'm2" m" m'2 
4 41' 4" 
4mm 4mml' 4"mm" 4m' m" 
3 31' 
3m 3ml' 3m' 
6 61' 6' 
6mm 6mml" 6" m'm 6m'm" 

(b) Ferromagnetic. 
Type I 

1 T 
2 rn 2/m 
3 
4 4 4/m 
6 -6 6/m 

Type III 

2" m' 2'/m" 2"2'2 m'm'2 re'm2' m'm'm 
32' 3m" 3rn' 
42'2' 4m'm' 742'm' 4~tam'm" 
62'2' 6m" m" -6rn'2" 6/mm" m" 

In a similar manner it is possible to show that there 
are also 31 Shubnikov point groups which describe 
structures in which ferromagnetism is possible, see 
Table l(b); these are the point groups in which M, 
the magnetization, which is represented by an axial 
c-vector need not necessarily vanish. 

In connexion with Table l(a) it is perhaps worth 
mentioning that in the literature there are two different 
ways of interpreting the operation of anti-symmetry 
when using the Shubnikov groups to describe ferro- 
electric crystals. One possibility, which is the one used 
in Table l(a), is to use the operation of antisymmetry 
with the same meaning that is commonly assigned to 
it in connexion with the description of magnetic sym- 
metries, that is, the operation of antisymmetry is 
taken as being 0, the operation of time inversion. In 
the alternative interpretation, which is used by a num- 
ber of authors (Neronova & Belov, 1959; Zheludev, 
1971), when the operation of antisymmetry is used in 
connexion with ferroelectric crystals it is used to mean 
the operation of reversing the electric dipole moment 
P. In this interpretation the symbols of many of the 
31 ferroelectric point groups will be different from the 
symbols given in Table l(a). Our reason for using the 
convention adopted is connected with the fact that to 
obtain a satisfactory explanation of some physical 
phenomenon, in microscopic terms, one almost inev- 
itably becomes involved in the use of wave functions 
at some stage in the discussion. Therefore, in the case 
of ferroelectricity, the advantage of retaining the same 
meaning for the operation of antisymmetry as 0, the 
operation of time inversion, which is commonly used 
in the description of magnetic symmetry, is that the 
effect of 0 on wave functions is well known and can 
easily be determined [see, for example, Bradley & 
Cracknell (1972)]. 

The consideration of the property of ferroelasticity 
from the viewpoint of symmetry studies differs from 
ferroelectricity and ferromagnetism in one rather im- 
portant respect. The question of the possibility of the 
existence of ferroelectricity or of ferromagnetism in a 
crystal with the symmetry of some given point group 
is determined by the transformation properties of cer- 
tain tensors of rank one under the operations of that 
point group. The possibility of the existence of ferro- 
electricity or of ferromagnetism in any given point 
group G is therefore a property of that point group G 
itself and is independent of the point group which 
describes the symmetry of the paraelectric or para- 
magnetic phase of the crystal and which, generally, is 
some supergroup of G. Therefore in connexion with 
Table 1 which lists the possible symmetries of ferro- 
electric and ferromagnetic crystals, there is no con- 
sideration given to the symmetry of the crystal in the 
high-temperature phase. However, in the case of ferro- 
elasticity the symmetry restrictions on the existence of 
ferroelasticity do not simply consist of determining the 
form of a certain tensor in a given point group. Neither 
is the property of ferroelasticity a property of a point 
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group G on its own, but rather it is a property of G 
considered in relation to some given prototypic group 
which is a supergroup of G. To clarify this we recall 
the explanation of the concept of ferroelasticity, as 
developed by Aizu (1969). 

Instead of regarding a ferroelectric or ferromagnetic 
crystal as a crystal in which there is a non-zero vector, 
P or M, there is an alternative approach which is more 
illuminating in connexion with the introduction of the 
concept of ferroelasticity. If a certain specimen is ferro- 
electric it can be regarded as being capable of existing 
in either of two 'orientation states', with polarizations 
P and - P  in the absence of an external electric field. 
It is then possible to 'flip' the polarization of the 
specimen from P to - P  (or from - P  to P) by the 
application and subsequent removal of an appropriate 
external electric field. Similarly, a ferromagnetic crys- 
tal can be regarded as a crystal which is capable of 
existing in either of two states with magnetization M 
and - M ,  where the magnetization of the specimen 
can be flipped from one value to the other by a suitable 
external magnetic field. In the case of ferroelasticity 
the polarization P or the magnetization M is replaced 
by the mechanical strain which is a tensor of rank two. 
Similarly the external electric field, or magnetic field, 
which can be used to 'flip' a specimen between the two 
orientation states + P, or + M, is replaced by an ex- 
ternal mechanical stress, which is also a tensor of rank 
two. In the definition of ferroelasticity (Aizu, 1969): 
'A crystal is said to be ferroelastic when it has two or 
more orientation states in the absence of mechanical 
stress, or of other external fields, and can be made to 
change from one to another of these states by a 
mechanical stress.' Thus, suppose that a certain cubic 
material undergoes a displacive phase transition to a 
tetragonal structure with c/a very close to unity, as 
occurs, for example, in VzSi at a temperature of about 
20.5 °K. If one starts with a single-crystal specimen of 
the cubic phase there will be three possible choices of 
direction for the fourfold axis of the tetragonal phase 
and, therefore, also the possibility of the existence of 
'domains'. However, suppose that the whole crystal 
has been induced to produce a single crystal of the 
tetragonal phase with the four-fold axis along the x 
axis of the cubic phase. Then if it is possible, by the 
application of an external mechanical stress, to 'flip' 
the specimen's distortion so that the fourfold axis is 
now along either the y axis or the z axis of the cubic 
phase the material would provide an example of ferro- 
elasticity. This demonstrates that ferroelasticity is not 
just a property of the point group G of the tetragonal 
phase, but of the fact that this point-group symmetry 
arises in this particular example in a material which 
is only very slightly distorted from a structure with a 
higher symmetry. Thus in constructing a table of point 
groups in which ferroelasticity may exist it is, there- 
fore, necessary to specify the appropriate supergroup; 
this is done for the classical point groups in Table 2 
of Aizu (1969). 

3. Tabulation of results 

Suppose that a certain point group G describes the 
symmetry of a specimen of a crystal which can be 
regarded as obtained by only a small distortion of a 
structure that possesses the symmetry of another point 
group Ge, which is a supergroup of G and which is 
described as the 'prototypic point group' of G in this 
structure. Suppose also that one orientation state of a 
given ferroelastic crystal is labelled as Sx; then each 
of the operations of the supergroup Gp either regen- 
erates $1 or generates one of a number of other orienta- 
tion states $2, $3,. • .. Ferroelasticity will be forbidden 
if the form of the tensor representing elastic strain is 
identical for the various orientation states S~, $2, 
$3 , . . . .  An alternative but equivalent approach would 
be to say that ferroelasticity is forbidden unless the 
tensor representing elastic strain takes a simpler form 
in Gp than in G. By 'taking a simpler form' we mean 
that there are some components which are required by 
symmetry to vanish or to be equal to other components. 

These conditions were applied to the classical point 
groups and the results were tabulated in Table 2 of 
the paper by Aizu (1969). We have now extended the 
use of these conditions to determine similar tables for 
all the Shubnikov point groups. In this connexion we 
have made extensive use of the subgroup tables given 
by Ascher & Janner (1965). We also note, of course, 
that the elastic strain is represented by a symmetric 
polar /-tensor of rank 2 and that, therefore, the form 
of the elastic strain tensor for any given Shubnikov 
point group can easily be obtained by using Table 7 
of the book by Birss (1966). It can be seen from Table 7 
of Birss (1966) that the form taken by a symmetric 
polar/-tensor of rank 2 is the same for all the Shubni- 
kov point groups in any given crystal system (see 
Table 2). The condition for the possibility of the exis- 
tence of ferroelasticity is that the species GeFG will 
have the possibility of being ferroelastic if G is a sub- 
group of G~, and if G and Ge belong to different crys- 

Table 2. General forms of symmetric second-rank polar 
i-tensors in each of the Shubnikov point groups 

Crystal system 
Triclinic 

Monoclinic 

Orthorhombic 

Trigonal, tetragonal, hexagonal 

Cubic 

( ell e,2 e l q  
el2 e22 e23 / 
e13 e23 e33/ 

o) 
e22 
0 e33 

(i ell 
0 e33 

ell 
0 ell 
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tal systems; for this purpose we regard trigonal and 
hexagonal groups as belonging to the same crystal 
system and note that tetragonal point groups are not 
related to trigonal or hexagonal point groups by sub- 
group relations. 

The results can most conveniently be tabulated in 
relation to the subgroup tables given by Ascher & 
Janner (1965). In those tables the triclinic, monoclinic 
and orthorhombic point groups (numbers 1-28) were 
not separated into crystal systems. The identification 
of ferroelastic species for these groups is therefore given 

explicitly in Table 3. The remaining point groups 
(numbers 29-122) were separated by Ascher & Janner 
according to crystal system and therefore in Table 4 
we simply give block diagrams which can be used in 
conjunction with Table 3(a), (b) and (c) of Ascher & 
Janner (1965). It should be noted that in the construc- 
tion of Tables 3 and 4 we do not impose one of the 
conditions which was used by Aizu (1969); namely, 
we do not eliminate the non-centrosymmetric sub- 
group G of a prototypic point group Gp which is 
centrosymmetric. This elimination appears to be based 

Table 3. Identification of ferroelastic species for groups 1 to 28 

The species GpFG is ferroelastic if the letter F appears in the entry in the row and column labelled by G;, and G respectively. 

.Pro%otypic 
point group 

m' C.(C I ) 5 

T c~ 6 

11' C I x @ 7 

T, ci(c ~ ) 8 

222 D;~ 9 

mm2 C~v 10 

2'2'2 D2(C ~) 11 

m'm'2 C27(C ~) 12 

2/m C2h 13 

21' C 2 x @ 14 

2/m' C2h(C 2) 15 

2'/m' C2h(C i) ~6 

m1' C s x @ 17 

2'/m C2h(C s) 18 

m'm2' C2v(C s) 19 

3"I' C i x @ 20 

mmm D2h 21 

2221' D 2 x @ 22 

m'm'm' D2h(D 2) 23 

m'm'm D2h(C2h) 24 

mm21' C2v x @ 25 

mmm' D2h(C2v) 26 

2/mi' C2h x @ 27 

mmml' D2h x @ 28 

\ 
\ 

\ 
\ 

F F 
, , , , , | 

Y E F ~, 
, , , , 

, , , , , , , 

i i F'F F 
I I I I I 

F F 
I I I I I I I 

| I I I J I I 

F 
I I I I I iI I 

F 
I I I ] | I I 

F F 
, , , , , , 

F F F F 

\ 
\ 
\ 
\ 
\ 

\ 
\ 

F F F I ~  F 
, i | i i 

Y F Y F F 

F l~ F F 
, , , ~ , , , 

F F F F F F  F F 

F F F F F  Y F 

F F F F F  F F Y 

F F F F  ; 

F F!F'F F F F'F i F F F F F F 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

. . . . . .  r 

I f I I i I I I I 

c~~,~. .~ l= ,_~c~o ~ o  ~j~= ~ =  ~ ~ ~ ~ 

~ - ~ ,  . ~ . ~ ~ : ~ .  ~ r ~ .  i . = .  = 
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on the view that  a species GeFG is not  able to be ferro- 
elastic if  there exists any F-operat ion [that is any opera- 
tion of  the set ( G e - G ) ]  which leaves the strain tensor 
of  an orientation state $1 unchanged.  We take the 
alternative, and not  necessarily equivalent, view that  

Table 4. Identification of  ferroelastic species for groups 
29 to 122 

Ferroelastic 

ferroelastic 

"= ==1 
(a) 

60 

122 

Ferroelas 

• - 03 

(b) 

Table 4 (cont.) 

Not  

ferroelastic 

107 

122 

Ferroelastic 

o 
cD 

(c) 

Tables 4(a), 4(b) and 4(c) are to be regarded as superimposed 
on Tables 3(a), 3(b) and 3(c) of Ascher & Janner (1965). For 
a species GvFG to be ferroelastic (i) G must be a subgroup of 
Gp, and (ii) the entry in the row and column labelled by Gp 
and G respectively, must occur in one of the blocks indicated 
above as ferroelastic. 

a species GeFG is not  able to be ferroelastic i f  all the 
F-operations [that is all the operations of  the set 
( G e - G ) ]  leave the form of  the strain tensor of  an 
orientation state $1 unchanged.  
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